Printed Page:-			Subject Code:- BEC0203					
		-	Roll. No:					1
NO	IDA	INSTITUTE OF ENGINEERING A	ND TECHNOI	OGY. G	REAT	<u> </u> 'ER N	OIDA	<u>]</u>
110		(An Autonomous Institute Aff				LICI	OID!I	
		B.Te		,	,			
		SEM: II - THEORY EXAM		20)			
TP\$	Э Т	Subject: Sensor	Technology		N/L	N.T.	100	•
		Hours structions:			IVI	ix. Ma	rks: 10(,
		y that you have received the question po	aper with the co	rrect cou	rse. cod	le. bra	ınch etc.	
		stion paper comprises of three Sections	_					
Quest	ions (MCQ's) & Subjective type questions.				_		
		n marks for each question are indicated	o .	side of e	ach que	stion.		
		your answers with neat sketches where	ever necessary.					
		ruitable data if necessary. ly, write the answers in sequential orde	r					
•		should be left blank. Any written mater		sheet wi	ll not b	e		
		hecked.	,					
SECT	TION-	<u>-A</u>					20)
1. Atte	empt a	all parts:-						
1-a.	W	Which of the following is a type of induction	ctive sensor? (C	O1, K2)			1	ĺ
	(a)	Thermocouple						
	(b)	Strain Gauge						
	(c)	LVDT						
	(d)	Hall Effect Sensor	3					
1-b.	` '	Which of the following is a type of resist	tive sensor? (CC)1 K2)			1	1
1 0.	(a)	Thermocouple	ave sensor. (e.e.	71, 112)			-	-
	(a) (b)	Strain Gauge						
	(c)	Hall Effect Sensor						
	(d)	Optical Sensor						
1 0	` ′		aa tammamatuma (TO) tunic	011v 004	t at fam	. 1	1
1-c.		When using an RTD, what is the referencesistance measurement? (CO2, K2)	ce temperature (10) typic	any sei	, at 101]	l
	(a)	0°C						
	(a) (b)	20°C						
	` ′	100°C						
	(c)							
1 1	(d)	273.15°C	ol for DTD 1	4- 4-	.1: 11	1		1
1-d.		What is the most commonly used materinear resistance-temperature CO2, K3)	ai for KTDs due	to its pre	edictabl	e and]	
	(a)	Copper						

	(b)	Platinum	
	(c)	Gold	
	(d)	Silver	
1-e.		Which of the following is not a configuration of a smart sensor? (CO3,K2)	1
1 0.	(a)	Transducer	
	(b)	Network interface	
	(c)	Processor	
	(d)	None of the mentioned	
1-f.		the storage of data possible in smart sensors? (CO3,K3)	1
	(a)	Yes, smart sensors can store data locally in their integrated memory.	-
	(b)	No, smart sensors only transmit data in real-time and do not store any data.	
	(c)	Smart sensors store data on external servers through a cloud connection.	
	(d)	Smart sensors can only store data for a few minutes before deleting it automatically	y .
1-g.		Which of these is NOT a component of an IoT system?	1
	(a)	Sensors	
	(b)	Actuators	
	(c)	Electric motor	
	(d)	Microcontroller	
1-h.		Which component of an IoT system is responsible for interpreting and processing atta from sensors?	1
	(a)	Actuators	
	(b)	Microcontroller	
	(c)	Gateway	
	(d)	Communication module	
1-i.	W	Which of the following libraries is used to control an LCD in Arduino?	1
	(a)	LiquidCrystal	
	(b)	LCDControl	
	(c)	DisplayLib	
	(d)	ScreenDriver	
1-j.	W	Which function is used to read analog input in Arduino?	1
	(a)	analogInput()	
	(b)	analogRead()	
	(c)	digitalRead()	
	(d)	readAnalog()	
2. Att	empt a	all parts:-	
2.a.	Н	low do temperature and pressure Sensor differ from each other. (CO1, K2)	2
2.b.	W	Vrite the formula of Hall voltage and explain it. (CO2, K2)	2
2.c.	W	That does RFID stand for? (CO3.K1)	7

2.d.	What is the difference between a consumer IoT and an industrial IoT? (CO4, K1)	2	
2.e.	Define LED. (CO5, K2)	2	
SECTIO	ON-B	30	
3. Answ	er any five of the following:-		
3-a.	What factors should be considered when choosing a sensor? (CO1, K2)	6	
3-b.	Provide an overview of gyroscopes and their applications in mobile phones and computers. Explain the technology behind them. (CO1, K2)		
3-c.	Differentiate the types of ultrasonic flow meter. (CO2, K2)	6	
3-d.	Write a short note on accelerometer sensor. (CO2, K1)	6	
3.e.	Describe the working mechanism of a self-testing smart sensor with a neat block diagram. (CO3,K2)	6	
3.f.	Illustrate the role of IoT in improving healthcare systems and its impact on patient care.	6	
3.g.	What are most common challenges faced in deploying IoT sensors in the field?	6	
SECTIO	<u>ON-C</u>	50	
4. Answ	er any one of the following:-		
4-a.	Discuss the classification of sensors based on their working principles. Explain each classification and provide real-world examples for each category. (CO1, K1)	10	
4-b.	Differentiate between sensord and transducers. And explain their applications in real world. (CO1, K3)	10	
5. Answ	er any <u>one</u> of the following:-		
5-a.	What are the advantages, disadvantages and applications of thermistor? (CO2, K1)	10	
5-b.	briefly explain the laws of thermocouple and types of thermocouple. (CO2, K3)	10	
6. Answ	rer any <u>one</u> of the following:-		
6-a.	Compare and contrast Passive, Active, and Semi-passive RFID tags with examples. (CO3,K1)	10	
6-b.	Explain the concept of tag collision and anti-collision techniques in RFID systems. (CO3,K3)	10	
7. Answ	er any one of the following:-		
7-a.	Outline the conceptual framework of IoT, focusing on the role of microcontrollers in bridging the physical and digital worlds. (CO5, K3)	10	
7-b.	Analyze the use of Node MCU in IoT projects and its advantages in wireless communication. (CO4, K1)	10	
8. Answ	er any one of the following:-		
8-a.	Write a program to interface an LED with Arduino Uno. (CO5, K3)	10	
8-b.	Evaluate the use of IoT in smart cities for traffic management and waste management. (CO5, K2)	10	